science

Can Microbes Finally Solve Our Plastic Problem?

Microbial Evolution Struggles Against Humanity’s Plastic Legacy

Can Microbes Finally Solve Our Plastic Problem?

Right now, everything around us is being eaten—by microbes. Bacteria, archaea, and fungi have evolved powerful enzymes to break down tough organic material into nutrients. But there’s one thing they can’t handle: plastics.

To make plastics, we refine oil, gas, and coal into long chains called polymers. This process needs high temperatures and pressure, along with other chemical tweaks. These man-made polymers are way different from natural ones, and microbes haven’t had enough time to evolve enzymes to digest them. Plus, breaking down plastics usually requires high temperatures, which kill most microbes. So, plastics don’t biodegrade; they just turn into tiny pieces that linger around.

We’re producing around 400 million tons of plastic every year. Unfortunately, about 80% of it ends up as trash: only 10% gets recycled, while 60% is incinerated or dumped into landfills. The remaining 30% leaks into the environment and can stay there for centuries, with 10 million tons ending up in oceans every year as microplastic fragments.

But there’s hope. In 2016, Japanese researchers found a bacterium called Ideonella sakaiensis 201-F6 in a plastic-bottle recycling plant. This bacterium had enzymes that could slowly break down PET polymers at low temperatures. Scientists isolated these enzymes and even managed to create super-enzymes that could break down PET much faster. Still, it takes weeks and works best below 40°C.

Meanwhile, another team in Japan found powerful enzymes in compost piles. Known as Leaf Branch Compost Cutinases, these enzymes can degrade PET at around 70°C. This makes the plastic easier to digest. With more research, the future of PET recycling is looking up.

However, PET is just one type of plastic. Other plastics, like Polyethylene (PE) and Polypropylene (PP), start breaking down only at temperatures above 130°C. Right now, we don’t know of any microbes or enzymes that can handle such heat, so we rely on energy-intensive processes to manage these plastics.

Only a small fraction of plastic waste can currently be broken down by microbes. Researchers are hunting for heat-tolerant microbes in extreme environments and engineering better enzymes in labs. But we can’t just rely on science to clean up our mess. We need to rethink our relationship with plastics, use them more efficiently, stop producing more, and develop environmentally-friendly polymers that microbes can easily break down.



Similar Posts
Blog Image
Bioelectric Tattoos: The Future of Health Tracking and Drug Delivery on Your Skin

Bioelectric tattoos are revolutionizing healthcare by combining health monitoring, drug delivery, and human-machine interfaces. These graphene-based e-tattoos monitor vital signs, deliver medications, and integrate with smart devices. They offer continuous health tracking, improved drug delivery, and potential for personalized healthcare. As the technology advances, it promises to transform how we manage our health and interact with our environment.

Blog Image
Glowing Waters: Nature's Dazzling Light Show Illuminates Ocean Secrets

Bioluminescent algae create stunning light displays in water. They glow as a defense mechanism, using chemical reactions involving luciferin and luciferase. These microorganisms are vital to marine ecosystems and serve as indicators of ocean health. Their light-producing abilities have applications in biotechnology, medicine, and sustainable lighting solutions. Preserving their habitats is crucial for ocean conservation and future scientific discoveries.

Blog Image
How Did a Missing British Parrot Return Speaking Spanish?

Parrots: The Unlikely Linguists with a Flair for Drama and Danger

Blog Image
Will Your Ears Survive Your Next Concert?

Rock On Safely: Master the Art of Hearing Protection for Endless Concerts

Blog Image
Did Big Oil Shape Our Climate Crisis with Misinformation?

Decades of Deception: The Oil Industry's Unseen War on Climate Truth

Blog Image
What Secrets Does the Twilight Zone Hold for a Hatchetfish's Survival?

A Hatchetfish's Nocturnal Odyssey: Defying Predators and Aiding Earth's Climate