science

What Happens When a Star Pushes Its Cosmic Limits?

Witness the Stellar Metamorphosis: From White Dwarfs to Neutron Stars in the Cosmos’ Fiery Forge

What Happens When a Star Pushes Its Cosmic Limits?

In the fascinating world of astrophysics, there’s a specific limit to how much mass a white dwarf star can sustain before undergoing a significant transformation. This limit, known as the Chandrasekhar limit, is named after the Indian-American physicist Subrahmanyan Chandrasekhar. He discovered that a white dwarf star could not possess more than about 1.4 times the mass of our Sun without collapsing.

When a white dwarf surpasses this limit, the core temperatures escalate dramatically, soaring past 5 billion degrees Celsius. At these intense temperatures, gamma rays are produced, which have enough energy to break iron nuclei into helium nuclei, also known as alpha particles. This reaction further increases the temperature to an astonishing 100 billion degrees Celsius.

Under such extreme conditions, electrons begin to combine with protons in a process termed electron capture, resulting in the formation of neutrons and a release of neutrinos. By this point, the electrons are captured by the nucleus, forming a dense core of neutrons. The end result is a transformation from a white dwarf into a neutron star.

Neutron stars are incredibly dense – much denser than white dwarfs. While a white dwarf could be roughly the size of the Earth, a neutron star shrinks down to a mere 10 to 20 kilometers wide. This immense density and compact size make neutron stars some of the most fascinating objects in the universe.



Similar Posts
Blog Image
Could Supersymmetry Be the Missing Link to the Theory of Everything?

Connecting the Cosmic Dots: Supersymmetry's Role in Unraveling the Universe's Secrets

Blog Image
What Tiny Forces Are Holding Your Whole World Together?

Unraveling the Universe: The Quantum Puzzle of Fundamental Particles and Forces

Blog Image
Optogenetics: Controlling the Brain with Light – A New Era in Neuroscience

Optogenetics combines genetics and optics to control brain cells with light. This revolutionary technique offers precise neural control, promising new treatments for neurological disorders and insights into brain function.

Blog Image
What Cosmic Secrets Await Inside a Black Hole?

Exploring the Enigmatic Wonders and Perils of Black Holes

Blog Image
Could Time Travel Be More Than Just Sci-Fi Dreaming?

Stretching the Fabric of Time: How Faster Clocks and Spinning Black Holes Could Shift Our Future

Blog Image
Why Does the Universe Prefer Laziness Over Order?

Nature's Hidden Playbook: The Quest for Laziness in the Cosmic Game of Energy and Entropy