science

Can a Squash Ball Ever Behave Like a Quantum Object?

Quantum Magic: Why Squash Balls Won't Behave Like Quantum Objects

Can a Squash Ball Ever Behave Like a Quantum Object?

At the subatomic and atomic levels, objects behave like waves, acting as Quantum objects. Large objects, however, like a squash ball, consist of an astronomical number of atoms—almost 10^15. Each of these atoms acts as a wave-like quantum object.

The challenge is that in large objects, the waves from these countless atoms interfere with each other in a disorganized and random manner. This interference averages out to zero on a macroscopic scale, a phenomenon known as decoherence. Because of decoherence, it’s hard to get a large object to act like a quantum object.

For a macro object like a squash ball to behave like a quantum object, all its quadrillions of individual waves would need to be coherent, meaning they would have to act in an organized way. The more coherent an object, the more it behaves like a wave and a quantum object. Achieving coherence in large objects is next to impossible, making it unfeasible for things like squash balls.

Interestingly, scientists have managed to achieve coherence in some large molecules consisting of several thousand atoms. This shows that while difficult, it’s not entirely impossible under the right conditions.



Similar Posts
Blog Image
Are You Ready to Unlock the Secret Worlds Hidden in Everyday Language?

Unlocking New Worlds Through the Magic of Metaphors

Blog Image
Cloud Seeding: The Controversial Science of Making It Rain on Demand

Cloud seeding is a weather modification technique that enhances precipitation by introducing tiny particles into clouds. It's a cost-effective method to boost snowfall and rainfall, potentially alleviating drought. While some studies show promising results, its effectiveness is debated. Cloud seeding doesn't contribute to greenhouse gases and is part of broader water management strategies. As we face climate challenges, it offers an innovative solution worth exploring.

Blog Image
Are We Living in One of Many Parallel Universes Right Now?

A Voyage Through the Multiverse: Quantum Mechanics' Many-Worlds Interpretation

Blog Image
Did a $20 USB Really Change the Course of Cyber Warfare?

Digital Espionage: The Day a $20 USB Drive Rewrote Cyber Warfare History

Blog Image
Are We Ready to Virtually Teleport into the Metaverse?

Virtually Escaping Reality: From Surfing the Web to Surfing Hawaiian Waves in the Metaverse

Blog Image
How CRISPR is Changing the Landscape of Genetic Research

CRISPR revolutionizes gene editing, promising to cure genetic diseases, enable organ transplants, and combat global health threats. It's faster, cheaper, and more precise, opening new frontiers in medicine and sparking ethical debates.