science

Can a Squash Ball Ever Behave Like a Quantum Object?

Quantum Magic: Why Squash Balls Won't Behave Like Quantum Objects

Can a Squash Ball Ever Behave Like a Quantum Object?

At the subatomic and atomic levels, objects behave like waves, acting as Quantum objects. Large objects, however, like a squash ball, consist of an astronomical number of atoms—almost 10^15. Each of these atoms acts as a wave-like quantum object.

The challenge is that in large objects, the waves from these countless atoms interfere with each other in a disorganized and random manner. This interference averages out to zero on a macroscopic scale, a phenomenon known as decoherence. Because of decoherence, it’s hard to get a large object to act like a quantum object.

For a macro object like a squash ball to behave like a quantum object, all its quadrillions of individual waves would need to be coherent, meaning they would have to act in an organized way. The more coherent an object, the more it behaves like a wave and a quantum object. Achieving coherence in large objects is next to impossible, making it unfeasible for things like squash balls.

Interestingly, scientists have managed to achieve coherence in some large molecules consisting of several thousand atoms. This shows that while difficult, it’s not entirely impossible under the right conditions.



Similar Posts
Blog Image
Ever Wonder What Really Happens When You Click Your Mouse?

Navigating the Digital Rabbit Hole: The Hidden Complexity of a Simple Mouse Click

Blog Image
Can Humans Really Fly if We Had Wings? The Surprising Science Behind Our Speed

Exploring the Fascination and Practical Challenges of Human Flight: An Imaginative Journey

Blog Image
Why Did Life Choose Carbon Over More Abundant Elements?

Carbon: The Bricklayer of Life's Cosmic Architecture

Blog Image
Can We Really Bend Time and Space for a Journey Through the Ages?

Timeless Journeys: Unraveling the Cosmic Mysteries of Wormholes and Time Travel

Blog Image
Stars, Trade, and Time: How Ancient Astronomy Shaped Global Commerce

Ancient trade routes like the Silk Road relied heavily on astronomy for navigation and timing. Stars guided travelers, predicted weather, and influenced decisions. Celestial observations led to tools like astrolabes, fostering cultural exchange. Astronomy and astrology intertwined, shaping agriculture, trade, and religious practices. This celestial connection facilitated global commerce and cultural interactions, leaving a lasting impact on our world.

Blog Image
Could the Secrets of Gravity Be Hidden in the Fabric of Space-Time?

Revolutionizing Gravity: The Journey from Newton to Quantum Mysteries